Keply Declaration of Lee L. Selwyn RM No. 10593 January 23, 2003 Page 46 of 60

3. ARMIS RESULTS PROVIDE A VALID DEMONSTRATION OF SPECIAL ACCESS RATES OF RETURN THAT ARE EXCESSIVE BY ANY REASONABLE STANDARD

ARMIS data provides a *conservative* estimate of RBOC rates of return on Special Access Services, and confirms that these are clearly excessive by any reasonable standard.

62. tach of the RBOCs has taken exception to AT&T's use of ARMIS data to demonstrate that the RBOCs have for several years been earning excessive rates of return on special access services, and that these rates of return are increasing at the same time as the **RBOCs** obtain greater and greater pricing flexibility. The RBOCs' general and specific criticisms of such ARMIS-based conclusions are without merit.

Although ARMIS has been scaled hack since the onset of price cap regulation, the Commission has repeatedly resisted eliminating the core reporting requirements of the ARMIS system. The Wirelinc Competition Burcau's Industry Analysis Division states in "ARMIS Frequently Asked Questions" that rhe data is used to support the Commission's analysis of broad policy issues, including the "Financial Conditions of the Industry (How Carriers are Doing and How Our Regulatory Programs are Working)" and "Consolidations and Mergers (Measure Changes in Productivity. Profitability, Service Quality)," as well as numerous areas of focused study, including "Rate development." "Depreciation," "Cost," "Financial Analyses," "Kale of Return," "Trend Analysis," and "Identification of Audit Topic/Subjects." "110"

64. Moreover, even as **ARMIS** has been revised, the **FCC** has made it clear that the reporting requirements support the Commission's ability to monitor the effectiveness of its regulatory policies. The Commission has repeatedly signaled that price regulation does not

^{110.} ARMIS FAQ, embedded tile at http://www.fcc.gov/wcb/armis/ (accessed 1/22/03).

Reply Declaration of Lee L. Selwyn RM No. 10503 January 23,2003 Page 47 of 60

1 make its cost accounting rules, as reported under ARMIS, obsolete." The Commission has

- 2 appropriately resisted the RBOCs' persistent attempts to make **ARMIS** a tool ofderegulation
- 3 rather than a regulatory tool that gets updated to reflect changes in regulatory requirements made
- 4 in response to such competition as has been shown to exist."

5

6

65. Each of the **RBOCs** advances the *possibility* that the specific allocation of costs and 7 revenues to individual service categories, as reflected in ARMIS, could result in the understate-8 ment of special access costs (or the overstatement of revenues), and hence in an overstatement of rates of return on special access services. However, the RROCs offer very few specific 10 examples to support this claim, and the several that they do provide cannot begin to account for \mathbf{H} the very significant excess earnings levels that AT&T has calculated based upon the ARMIS data. 113 Where the RBOCs' claims have been articulated in sufficient detail to permit it, I have 12

13 examined these specific criticisms and have determined that they are either (a) erroneous. (b)

14 irrelevant to special access, (c) have an insignificant financial impact upon the special access

^{113.} **As** an aside, it should be noted that the RBOCs are hardly passive recipients of the Commission's cost allocation rules. Over the years, RBOC input has worked to shape cost accounting and other reporting requirements in ways that, if anything, work to support, and not frustrate, RROC strategic goals.

III. Comprehensive Review of Accounting Requirements and ARMIS Reporting Requirements for Incumbent Local Exchange Carriers: Phase I, CC Docket 99-253, released March 8, 2000, at para. 48: "The Commission continues to require accounting and financial data about these carriers to make informed regulatory judgments on numerous policy and ratemaking issues. Furthermore, under the current regulatory price cap scheme, carriers have the ability to seek full recovery of regulated costs through low-end adjustments, as well as taking claims. 'Thus, our continued monitoring of the reasonableness of these costs is necessary." See also, 2000 Biennial Regulatory Review - Comprehensive Review of the Accounting Requirements and ARMIS Reporting Requirements for Incumbent Local Exchange Carriers, Phase 2, CC Docket 99-253, FCC 00-199, released November 1, 2001, at paras. 10-12.

^{112.} See, e.g., 2000 Biennial Regulatory Review of Accounting and ARMIS Requirements, supra, at para. 6: "In adopting these rule changes, we have attempted to steer a course that avoids both deregulation simply for its own sake and the countervailing temptation to retain rules that may no longer he necessary."

Rcply Dcclaration of Lee L. Selwyn RM No. 10593 January 23, 2003 Page 48 of 60

Ì rates of return as calculated by AT&T. and/or (d) offset by other allocation adjustments that cut 2 in the opposite dirrction 3 4 66. DSL costs and revenues. Kahn/Taylor, BellSouth and Qwest note that most carriers 5 include DSL revenues in ARMIS-reported special access revenues, while special access accounts are typically assigned only a fraction of the costs. 114 Qwest indicates that: 6 7 8 the rules assign revenues associated with Digital Subscriber Line ("DSL") 9 services and interstate packet switching services to the special access element, but assign a significant portion of the associated interstate costs to other 10 elements. Taken together, these issues significantly inflate the rate-of-return 11 numbers upon which AT&T places so much reliance. 115 4 The actual impact, however, of this **DSL** revenue upon special access rates of return is 15 demonstrably minor. First, SBC does not include DSL revenues in its special access service category. 116 As for the other RBOCs, the Table below excludes DSL revenues based upon 16 17 Kahn/Taylor estimates, and recalculates special access rates of return with DSL revenues 18 removed.

^{114.} Kahn/Taylor Decl.. at 14-15: BellSouth Comments at 6: Qwest Comments at 4-5

^{115.} Qwest Conimonts, at 4

^{116.} Kahn/Taylor Decl., at tn. 28.

Rcply Declaration of Lee 1. Selwyn RM No. 10593 January 23, 2003 Page 49 of 60

1

Table 12

Estimated Interstate Special Access Costs and Revenues By RBOC (Including GTE) Using Kahn/Taylor DSL Revenue Assumpttons \$ in Thousands

	BellSouth	Qwest	SBC	Verizon	Sum RBOC
	2001	2001	2001	2001	2001
	4.550.740	04.547.440	* 4 0 7 4 0 0 7	04.050.000	212 122 12
Revenues	1,853,719			\$4,656,039	
Expenses	651,550	\$540,240	\$1,286,951	\$2,564,752	\$5,043,49
Net Return	751,379	\$646,769	\$1,928,324	\$1,252,839	\$4,579,31
Net investment	1,525,302	\$1,407,245	\$3,531,727	\$5,768,191	\$12,232,46
Rate of Return (%)	49.26%	45.96%	54.60%	21.72%	37.44%
Revenue					
Attributable to DSL	\$264,000	\$39,689	\$0	\$106,311	\$410,000
Rate of Return					
without DSL	31.95%	43.14%	54.60%	19.88%	34.08%

Source: ARMIS Table 43-01. Accounts 1090, 1190, 1910, 1915. Revenue figures are based on Kahn/Taylor assertion that total DSL revenues in 2001 for BellSouth. Verizon and Qwest were \$410 million (Kahn/Taylor, at 15). BellSouth DSL revenue figures from the BellSouth 2001 Annual Report, Verizon and Qwest figures are estimates based on proportion of each company's DSL subscribers and residual revenues from the Kahn/Taylor revenue figure after removal of BellSouth revenues As noted by Kahn/Taylor, SBC DSL revenues are not included in special access ARMIS data, and therefore have not been removed.

- 67. Removing all DSL revenues for all RBOCs claiming to book those revenues to special
- 2 access accounts reduces the special access rates of return by about 3.3%. Total RBOC return on
- 3 special access services, per ARMIS, would decrease from 37.44% to 34.08% if DSL revenues
- 4 are removed but without any other adjustments. This estimate, however, is likely to be highly
- 5 conservative (i.e., to understate the residual special access rates of return) since, as explained
- 6 below, it is also likely that at least some, perhaps even most, DSL investment and associated
- 7 rxpenses are also included in special access accounts. Indeed. BellSouth has specifically noted
- 8 that it assigns DSLAM circuit investment to special access, confirming the conservative nature

Reply Declaration of Lee L. Selwyn KM No. 10593 January 23, 2003 Page 50 of 60

- of this estimate. 117 Inasmuch as Kahn/Taylor's DSL revenue figure of \$410-million is
- 2 unsupported and refers only to 2001 revenues, I have prepared an additional estimate of special
- 3 access rates of return without DSL revenues, using verifiable sources. Table 12 below contains
- 4 rate of return calculations employing alternate estimated DSL revenues.

^{117.} BellSouth Comments. at fn. 6.

Reply Declaration of Lee L. Selwyn RMNo. 10593 January 23, 2003 Page **51** of 60

Table 13

Estimated Interstate Special Access Costs and Revenues By RBOC (Including GTE) \$ in Thousands

" <u>- </u>	BellSouth		Qwest		SBC		<u>Verizon</u>		Sum RBOC	
	2000	2001	2000	2001	2000	2001	2000	2001	2000	<u>2001</u>
	4. 5 5 4 8 5 5 5 5			A Company of the Company	and the second second	Cappen of the Cappen of the			and the second	
Revenues	1,233,259	1,853,719	\$1,226,147	\$1,547,442	\$3,405,544	\$4,374,967	\$3,718,755	\$4,656,039	\$9,583,705	\$12,432,167
Expenses	494,806	651,550	\$517,281	\$540,240	\$1,374,033	\$1,286,951	\$2,387,030	\$2,564,752	\$4,773,150	\$5,043,493
Net Return	458,996	751,379	\$452,893	\$646,769	\$1,261,469	\$1,928,324	\$793,275	\$1,252,839	\$2,966,633	\$4,579,311
Net investment	1,247,668	1,525,302	\$1,181,070	\$1,407,245	\$2,919,756	\$3,531,727	\$5,102,557	\$5,768,191	\$10,451,051	\$12,232,465
Rate of Return (%)	36.79%	49.26%	38.35%	45.96%	43.20%	54.60%	15.55%	21.72%	28.39%	37.44%
Revenue Attributable to DSL	\$51,600	\$183.4 <u>5</u> 6	\$88,193	\$159,197	 \$0	 	\$143,280	\$377,622	\$283,073	\$720.275
Rate of Return without DSL	32.65%	37.23%	30.88%	34.65%	43.20%	54.60%	12.74%	15 17%	25.68%	31.55%

I 68. Using this alternative analysis, the special access rate of return drops by slightly less 2 thnn 6% for 2001 (and less than 3% for 2000). Nevertheless, the RBOCs still enjoyed rates of 3 return on special access services above 30% which, hy any conventional standard— and 4 especially during the current economic downturn — is indicative of supracompetitive earnings 5 arising through the RBOCs' exercise of market power. While BellSouth, Qwest and Kahn/ Taylor may attempt to muddy the water by raising the "DSL issue," even the "worst case 7 scenario" — where all DSL revenues are included and all DSL costs are excluded — cannot 8 "explain" the persistently excessive rates of return that prevail with respect to special access 9 services.118

10 11

12

13

14

15

16

17

18

 \mathbf{p}

69. Significantly, while the RBOCs may *claim* that DSL investments and expenses are not being allocated to special access, recent investment trends tend to suggest otherwise. As the following table confirms, between 1996 and 2001, RBOC (including GTE) special access investments grew from \$5.7-billion to more than \$12.2-billion. By comparison, most other categories of RBOC interstate investment remained largely unchanged over the corresponding time frame, and intrastate investments actually *decreased* by nearly \$10-billion. Given the rapid growth of DSL and the high capital costs that have been ascribed to its deployment, it is difficult to imagine any other explanation for the more than doubling of special access investment while all other categories remained essentially the same or even decreased, if DSL is *not* included within

^{118.} In several other proceedings before the Commission, the RBOCs have sought to portray the market for DSL as so highly competitive as to justify regulatory forbearance, if not outright deregulation. See, e.g. SBC Petition for Expedited Ruling that it is Non-Dominant in its Provision of Advanced Services and for Forbearance from Dominant Carrier Regulation of Those Services, CC Docket No. 01-337, SBC Petition, October 3, 2001. Their experts have suggested that the highly competitive nature of the .'high-speed Internet access market," wherein DSL competes with cable modem scrvices, has placed the KBOCs in a non-dominant position and, in fact, has not even permitted them to recover the costs of providing ADSL services, which are put as high as \$86 per month. See, Declaration of Robert W. Crandall and J. Gregory Sidak, filed as Attachment A in the above petition, at 51. It would seem that, in the various "broadband" proceedings, DSL is actually being provided at a loss, whereas in the instant docket DSL is portrayed as being so enormously profitable that it is pushing up special access returns to supracompetitive levels. At the very least, these DSL stories dujour demand careful scrutiny.

Reply Declaration of Lee J. Selwyn R M No. 10591 January 23, 2003 Page 53 of 60

those special access investments. And, of course, if DSL costs are being included in the ARMIS

- data for special access, then it is certainly appropriate to also include corresponding DSL revenues, as had been done in the Friedlander declaration tiled with AT&T's Petition."
- 4 Accordingly. the figures provided by AT&T for special access rates of return whichin some
- 3 cases exceeded 50% have in no sense been impeached by the RBOC experts.

6

7

- 70. Mismatch between allocation of expenses and revenues for marketing. Verizon claims
- 8 that "marketing expenses are allocated across all access categories, but that the associated
- 9 revenues are recovered from common line and special access." This claim is unfounded. Prior
- 10 to price cap regulation, marketing expenses were allocated to and recovered from all interstate
- II services in proportion to the investments assigned by the Part 69 cost allocation rules. The
- 12 Commission's May 1997 Access Reform Order retained the assignment of marketing costs to
- 13 special access and interexchange services that are marketed to retail customers, but removed
- 14 marketing from switched access elements (by reducing the price cap indices for the common
- 15 line. traffic sensitive, and trunking baskets) sold exclusively on a wholesale basis. 121 Neither this
- 16 change, nor any subsequent Commission action, has diminished the level of marketing expenses
- 17 rccovcred from special access rates. 122

18

^{122.} **As** another example of a category-specific ARMIS cost-revenue mismatch, Venzon mentions that "amounts collected for universal service recovery are booked as common line revenues, while amounts due to USAC [Universal Service Administrative Corporation] are recorded in the interexchange category." Verizon Comments at 22, fn. 50. However, neither the costs nor the revenues in question have any impact upon special access and, thus, Verizon's example is completely irrelevant to the matter at hand.

^{119.} Declaration of Stephen Friedlander on Behalf of AT&T Corp., RM 10593, October 15, 2002.

^{120.} Verizon Comments, at 22.

I2 I. Access Charge Reform, First Report and Order: FCC 97-158, released May 16, 1997, para. 323.

Τ 71. Packet switching costs not in special access. Qwest claims that packet switching costs incurred to provide certain special access services (Frame Relay, ATM) are assigned to the general switching category, iind not to special access. 123 tlowever, Qwest does not quantify the 3 amount of costs that it claims are misallocated. Moreover, Qwest neither claims nor makes any effort to establish in its comments that revenues associated with the switching functions used to provide frame relay and ATM services are not also being reflected in one of the several different 6 7 switching revenue accounts identified in Part 32. Put simply, Qwest has failed to demonstrate any mismatch, inasmuch as it has focused solely upon the assignment of costs and not addressed tlic treatment of the corresponding revenues. 'The Commission thus has no basis to evaluate the validity or importance of criticisms such as this one, when the RBOCs, which have by Tarthe best access to the underlying information, present only their contentions but with no facts or specifics to hack them up.

13 14

15

16

17

18

19

20

21

2

3

5

8

9

10

11

12

72. Secondary and tertiary expenses: Finally, Qwest complains that because carriers are required to assign secondary and tertiary expenses in proportion to the primary investments assigned to a category, any potential underallocation of primary investments to special access would be exacerbated. However, this is merely another theoretical argument. As discussed above, the RBOCs have simply not established that primary investments are not being properly assigned to the special access category. Moreover, the magnitude of these secondary and tertiary expenses is simply not large enough to offset Io any significant extent the RBOCs' substantial overearning for the special access services.

22

23

24

- 73. It is also worth recalling that **ARMIS** costs are *embedded* costs, which are generally higher than !Lorward-looking incremental costs (i.e., TELRIC). If forward-looking costs of
 - 123. Qwest Comments, at 12

Reply Declaration of Lee L. Selwyn R M No. 10593 January 23.2003 Page 55 of 60

special access were substituted for the embedded costs from ARMIS, the resulting rates of return on forward-looking investment levels would be even higher.

Ю

I

74. In fact, while the RROCs' service examples fail to show that ARMIS underallocates costs to special access services (or overstates the appropriate revenues), historical experience and costing trends actually support precisely the opposite conclusion. The RBOCs have a poor track record for maintaining accurate records of their network investments, particularly as to the removal of plant no longer in service. The Commission's 1999 audit reports of RBOCs' continuing property records found that these carriers could not account for approximately \$5-billion in central office equipment that remained on their books. It is likely that the RBOCs' regulatory books of account also include costs for facilities that are no longer in service. The continuing property records audits also demonstrated that the nature of the record-keeping errors was consistently biased toward *including* items that should have been excluded, rather than the other way around. Accordingly, it is far more likely that the embedded investment costs recorded in ARMIS represent an *overstatement* of actual plant in service, thereby further contributing to the highly conservative character of the Friedlander ROR figures.

75. The consistent upward trend in the RBOCs' rates of return for special access also tends to belie their objections regarding the reliability of the ARMIS data. Even if there are allocation errors in ARMIS, the RBOCs have offered no evidence to suggest that whatever misallocations might actually be present, if any, are anything other than consistent from year to year. The presence of any systematic bias in the data may impact the accuracy of individual data points,

^{124. 1998} Biennial Regulatory Review — Review of Depreciation Requirements for Incumbent Local Exchange Carriers; Ameritech Corporation Telephone Operating Companies' Continuing Property Records Audit, et. al., GTE Telephone Operating Companies Release of Information Obtained During Joint Audit. CC Dockets 98-137 and 99-117, AAD File No. 98-26. released April 3. 2000, FCC 00-119, at para. 15.

Reply Declaration of I ce L. Selwyn KM No. 10593 January 23,2003 Page 56 of 60

but as long as the misallocation bias is systematic over time, the (rends revealed through an examination of multiple years' results will still provide an accurate picture of ongoing market dynamics. Although there is inevitably some subjectivity involved in allocating costs that cannot be directly assigned, the methodology itself, and hence the resulting allocations, do not fluctuate significantly from year to gear. Thus, if competition for special access services were actually constraining prices as the RBOCs contend, the ROR for special access would tend to decrease over time. Hut in fact it is actually increasing, suggesting not only that price-constraining coinpetition is not present. hut that the extent of ongoing RBOC market power with respect to these scrvices is growing.

76. Finally, suddenly *relying* upon ARMIS data, Kahn and Taylor have contended that the average revenue per line for special access has actually been decreasing "by more than 1% per year" during the 1996-2001 period. My own review of the data suggests errors in the Kahn/ 'Taylor analysis. Based upon replicable ARMIS data, the average revenue per line, decreased by only two-tenths of one percent over the entire period (a reduction in average annual revenue per line of only \$0.33). **As I** will discuss in more detail below, use of an average annual revenue per line calculated using DS-O equivalents is seriously flawed, but even accepting the flawed Kahn/ Taylor evidence, the data proves, rather than disproves AT&T's allegations. **At** page 16 of the Kahn/Taylor declaration, a figure appears entitled "RBOC Special Access Revenue per Special Access Line". Even a cursory review of that Figure reveals declining revenue per line amounts occurred during the period 1997-2000 — when the special access rates were still generally subject to price cops and the x-factor-driven annual reductions associated therewith — and that there has been a total reversal of that trend (recouping virtually all of the reductions during the prior four years) in the RBOCs' revenues tor 2001 — the first full year during which any of the RBOCs had pricing flexibility for Special Access Services. ¹²⁵

^{125.} BellSouth, the first RROC' to apply for and be granted pricing flexibility, approved (continued...)

1

2

3

4

5

6

7

8

9

10.

11

77. Moreover, assuming (as Kahn and Taylor do) for sake of argument that the analysis of an average "revenue" per line based upon DS-0 equivalents has any validity, then one should be able to examine the average "investment" and average "expense" per line as well. As Table 14 below reveals, during the 1996 to 2001 period in which average revenue per line declined by only two tenths of percent, average investment and average expense per line each declined by almost hall', Review of those "average" per line results for those three categories more than proves AT&T's initial point. During the 1996 to 2001 period, while the average revenue per line dropped only \$0.33 from \$157.00 to \$156.67, the average expense per line dropped by \$59.78, from \$123.33 to \$63.55, and the average investment per line dropped by \$103.45, from \$257.50 to \$154.05. Overall, the results demonstrate that by 2001, the net return, per DS-0 equivalent access line had climbed by more than 185%, from the \$20.79 of 1996, to \$57.76.

			Table 14					
	1996	1997	1998	1999	2000	2001	<u>Change</u> 1996-2001	
(a)Revenues(000)	\$3,464,545		\$5,536,133		\$9,591,843	\$12,450,913	259.4%	
(b) Expenses(000)	\$2,721,59	3\$3,275,870	\$3,404,629	\$3,988,276	\$4,780,29	3\$5,050,329	85.6%	
(c) Net investment (000)	\$5,682,447	\$6,373,074	\$7,149,582	\$8,440,569	\$10,462,62	1\$12,242,494	115.4%	
(d) Net return	\$445,552	8617.253	\$1,279,675	\$1,906,740	\$2,967,064	\$4,590,506	930.3%	
(e) Rate of Return (d/c)	7.8%	9.7%	17.9%	22.6%	28.4%	37.5%	378.2%	
(f) Special Access Lines	22,067,774	26,260,13	33,999,156	48,708,16	65,451,767 و	79,470,2	0 260.1%	
(g) Revenues per line (a/f	\$15700	\$164.2	2 \$162.83	\$146.61	\$146.5	\$156.6	7 -0.2%	
(h) Expenses per line (b/f	\$123.33	\$124.7	5 \$100.14	\$81.88	\$73.04	\$63.55	-48.5%	
(I)Investment per line (c/	\$257.50	\$242.6	\$210.2	\$173.2			-40.2%	
(j) Net return per line (d/f)	\$20.19	\$23.51	\$37.64	\$39.1	\$45.33	\$57.7	186.1%	
Sources of data:								
Financial data from ARMIS 4301, Column S, Rows 1090, 1190, 1910, 1915 and 1920.								
Lines are counted in terms of voice-grade equivalents. from ARMIS 4308 Jow 910, columns K and L								

authority at the end of 2000. BellSouth Petition for Pricing Flexibility for Special **Access** and Dedicated Transport Services. CCB/CPD No. 00-20, Memorandum Opinion and Order, 15 FCC Rcd 21588, (Dec. 15, 2000).

^{125 (...}continued)

ı 7X. Moreover, translating ARMIS data into DS-0 equivalent lines, as Kahn and Taylor have 2 done, results in n tlnwcd analysis. It is highly likely that the higher-capacity special access 3 services, at the DS-3 and OCn levels, have experienced disproportionately greater growth than 4 low-capacity DS-0 and DS-I services. Since the effective price per DS-0 equivalent channel is 5 lower in these higher capacity services, their likely disproportionate growth readily explains the 6 apparent drop in DS-0 equivalent price levels (revenue per line). The more appropriate 7 comparison, of course, is a like-for-like price change for the same capacity service. And as 8 Tables I through 4 above clearly demonstrate, those prices in areas subject to Phase 11 pricing 9 llcxibility have been on the rise over the period since pricing flexibility became effective. 10 Performance data reported under ARMIS shows continuing problems in special access П 12 service quality. 13 14 79. Finally, in their declaration, Kahn and Taylor take issue with AT&T's observation that 15 the RBOCs are not being constrained by competition to improve the quality of their special access services provisioning."" In particular, they claim that ARMIS data show a steady 16

Taylor's analysis appears to be based on trouble reports per voice grade equivalent line, which means that the successful provisioning of an order involving one OCn circuit offsets many unsuccessful provisioning of lower bandwidth special access lines. A more realistic picture can be obtained by looking at trouble reports for special access service based on the "total number of orders or circuits," as shown in ARMIS report 43-05. When these data is analyzed, the picture of consistent improvement presented by Kahn and Taylor evaporates. As shown in the attached

improvement in RBOC special access service provisioning between 1996 and 2001. Kahn and

24 table (Attachment 2 to this Declaration), some RBOCs have done better than others. However,

25 Ameritech, which reports by far the best performance, reports an anomalously high number of

26 "orders or circuits" for the 2000 to 2001 period (three to four times as many as in the four prior

17

^{126.} Kahn/Taylor Decl., at 16-17

Reply Declaration of Lee L. Selwyn RM No. 10593 January 23, 2003 Page 59 of 60

7

- years), which could account, at least in part, for the apparent improvement in its trouble report
- 2 percentages. Without these recent Ameritech numbers, RBOC trouble reports as a percentage of
- 3 orders or circuits rose substantially from 1998 to 2001. In any event, even a consistent record of
- 3 having trouble report on more than half of all orders is hardly a commendable performance and
- 5 is consistent with the conclusion presented by Ordover and Willig that the RBOCs are not
- 6 constrained by competitive forces with respect to their service quality for special access services.

Rcply Declaration of Lee L. Selwyn RM No. 10593 January 23, 2003 Page (io of 60

I	The foregoing statements are true and correct to the best of my knowledge, information and
2	belief.
3	An Qhl
4	
5	
6	LEE L.SELWYN
7	

Attachment 1 Statement of Qualifications

Statement of Qualifications

DR. LEE L. SELWYN

Dr. Lee L. Sclwyn has been actively involved in the telecommunications field for more than twenty-five years, and is an internationally recognized authority on telecommunications regulation, economics and public policy. Dr. Selwyn founded the firm of Economics and Technology, Inc. in 1972, and has served as its President since that date. He received his Ph.D. degree from the Alfred P. Sloan School of Managenient at the Massachusetts Institute of Technology. He also holds a Master of Science degree in Industrial Management from MIT and a Bachelor of Arts degree with honors in Economics from Queens College of the City University of New York.

Dr. Sclwyn has testified as an expert on rate design, service cost analysis, form **of** regulation, and oilier telecommunications policy issues in telecommunications regulatory proceedings before some forty state commissions, the Federal Communications Commission and the Canadian Radio-television and Telecommunications Commission, among others. He has appeared as a witness on behalf of commercial organizations, non-profit institutions, as well as local, state and federal government authorities responsible for telecommunications regulation and consumer advocacy.

He has served or is now serving as a consultant **to** numerous state utilities commissions including those in Arizona, Minnesota, Kansas, Kentucky, the District of Columbia, Connecticut, California, Delaware, Maine, Massachusetts, New Hampshire, Vermont, New Mexico, Wisconsin and Washington State, the Office of Telecommunications Policy (Executive Office of the President), the National Telecommunications and Information Administration, the Federal Communications Commission, the United Kingdom Office of Telecommunications, and the Secretaria de Comunicaciones y Transportes of the Republic of Mexico. He has also served as an advisor on telecommunications regulatory matters to the International Communications Association and the Ad Hoc Telecommunications Users Committee, as well as to a number of major corporate telecommunications users, information services providers, paging and cellular carriers, and specialized access services carriers.

Dr. Selwyn has presented testimony as *an* invited witness before **the** U.S. House of **Representatives** Subcommittee on Telecornminications, Consumer Protection and Finance and before the U.S. Senate Judiciary Committee, on subjects dealing with restructuring and deregulation of portions of the telecommunications industry.

In 1970, he was awarded a Post-Doctoral Research Grant in Public Utility Economics under a program sponsored by the American Telephone and Telegraph Company, to conduct research on the economic effects of telephone rate structures upon the computer time sharing industry. This work wiis conducted at Harvard University's Program on Technology and Society, where he was appointed as a Research Associate. Dr. Selwyn was also a member of the faculty at the College of Business Administration at Boston University from 1968 until 1973, where he taught courses in economics, finance and management information systems.

Dr. Selwyn has published numerous papers and articles in professional and trade journals on the subject of telecommunications service regulation, cost methodology, rate design and pricing policy. These have included:

"Taxes, Corporate Financial Policy and **Return** to Investors" *National Tax Journal*, Vol. XX, No.4, December 1967.

"Pricing Telephone Terminal Equipment Under Competition" *Public Utilities Fortnightly*, December 8, 1977.

"Deregulation. Competition, and Regulatory Responsibility in the Telecommunications Industry"

Presented ut the 1979 Rate Symposium on Problems of Regulated Industries Sponsored by: The American University, Foster Associates, Inc., Missouri Public Service Commission, University of Missouri-Columbia, Kansas City, MO, February 11 - 14, 1979.

"Sifting Out the Economic Costs of Terminal Equipment Services" *Telephone Engineer and Management*, October 15, 1979.

"Usage-Sensitive Pricing" (with G. **F.** Borton) (a three part series)

Telephony, January 7, 28, February 11, 1980.

"Perspectives on Usage-Sensitive Pricing" Public Utilities Fortnightly, May 7, 1981

"Diversification, Deregulation, and Increased Uncertainty in the Public Utility Industries"

Comments Presented at the Thirteenth Annual Conference of the Institute

← Public Utilities, Williamsburg, VA - December 14 - 16, 1981.

"Local Telephone Pricing: Is There a Better Way?; The Costs of LMS Exceed its Benefits: a Report on Recent U.S. Experience."

Proceedings of a conference held at Montreal, Quebec - Sponsored by Canadian Radio-Television and Telecommunications Commission and The Centre for the Study of Regulated Industries, McGill University, May 2 - 4, 1984.

"Long-Run Regulation of AT&T: A Key Element of A Competitive Telecommunications Policy" *Telematics*, August 1984.

"Is Equal Access an Adequate Justification for Removing Restrictions on **BOC** Diversification?"

Presented at /he Institute of Public Utilities Eighteenth Annual Conference, Williamsburg. VA - December X - 10, 1986.

"Market Power and Competition Under an Equal Access Environment"

Presented at the Sixteenth Annual Conference, "Impact of Deregulation and Market Forces on Public Utilities: The Furure Role of Regulation"

Institute of Public Utilities, Michigan State University, Williamsburg, VA - December 3 - 5, 1987.

"Contestable Markets: Theory vs. Fact"

Presented ut the Conference on Current Issues in Telephone Regulations: Dominance and Cost Allocation in Interexchange Markets - Centerfor Legal and Regulatory Studies Department of Management Science and Information Systems - Graduate School of Business, University of Texas at Austin, October 5. 1987.

"The Sources and Exercise of Market Power in the Market for Interexchange Telecommunications Services"

Presented ut the Nineteenth Annual Conference - "Alternatives to Traditional Regulation: Options for Reform" - Institute of Public Utilities, Michigan State University, Williamsburg, VA, December, 1987.

"Assessing Market Power and Competition in The Telecommunications Industry: Toward an Empirical Foundation for Regulatory **Reform**" *Federal Communications Law Journal*, Vol. 40 Num. 2, April 1988.

"A Perspective on Price Caps as a Substitute for Traditional Revenue Requirements Regulation"

Presented at the Twentieth Annual Conference - "New Regulatory Concepts, Issues and Controversies" - Institute of Public Utilities, Michigan State University, Williamsburg, VA, December, 1988.

"The Sustainability of Conipetition in Light of New Technologies" (with D. N. Townsend and **P.** D. Kravtin)

Presented at the Twentieth Annual Conference - Institute of Public Utilities Michigan State University, Williamsburg, VA, December, 1988.

"Adapting Telecom Regulation to Industry Change: Promoting Development Without Compromising Ratepayer Protection" (with S. C. Lundquist)

IEEE Communications Magazine, January, 1989.

"The Role of Cost Based Pricing of Telecommunications Services in the Age of Technology and Competition"

Presented at National Regulatory Research Institute Conference, Seattle, July 20, 1990.

"A Public Good/Private Good Framework for Identifying POTS Objectives for the Public Switched Network" (with Patricia D. Kravtin and Paul S. Keller) Columbus, Ohio: *National Regulatory Research Institute*, September 1991.

"Telecommunications Regulation and Infrastructure Development: Alternative Models for the Public/Private Partnership"

Prepared jor the Economic Symposium of the International Telecommunications Union Europe Telecom '92 Conference, Budapest, Hungary, October 15, 1992.

"Efficient Infrastructure Development and the Local Telephone Company's Role in Competitive Industry Environment" Presented ut the Twenty-Fourth Annual Conference, Institute of Public Utilities, Graduate School of Business, Michigan State University, "Shifting Boundaries between Regulation and Competition in Telecommunications and Energy", Williamsburg, VA, December 1992.

"Measurement of Telecommunications Productivity: Methods, Applications and Limitations" (with Françoise M. Clottes)

Presented at Organisation for Economic Cooperation and Development, Working Party on Telecommunication and Information Services Policies, '93 Conference "Defining Performance Indicators for Competitive Telecommunications Markets". Paris, France, February 8-9, 1993.

"Telecommtrnications Investment and Economic Development: Achieving efficiency and balance among competing public policy and stakeholder interests"

Presented at /he 105th Annual Convention and Regulatory Symposium, National Association & Regulatory Utility Commissioners, New York, November 18, 1993.

"The Potential for Competition in the Market for Local Telephone Services" (with David N. Townsend and Paul S. Keller)

Presented at the Organization for Economic Cooperation and Development Workshop on Telecommunication Infrastructure Competition, December 6-7, 1993.

"Market Failure in Open Telecommunications Networks: Defining the **new** natural inonopoly," *Utilities Policy*, Vol. 4, No. I, January 1994.

The Enduring Local Bottleneck: Monopoly Power and rhe Local Exchange Carriers, (with Susan M. Gately, et al) a report prepared by ETI and Hatfield Associates, Inc. for AT&T, MCI and CompTel, February 1994.

Commercially Feasible Resale of Local Telecommunications Services: An Essential Step in the Transition to Effective Local Competition, (Susan M Gately, et al) a report prepared by ETI for AT&T, July 1995.

"Efficient Public Investment in Telecommunications Infrastructure" *Land Economics*, Vol 71, No.3, August 1995.

Funding Universal Service: Maximizing Penetration and Efficiency in a Competitive Local Service Environment, Lee L. Selwyn with Susan M. Baldwin, under the direction of Donald Shepheard, A Time Warner Communications Policy White Paper, September 1995.

Stranded Investment and the New Regulatory Bargain, Lee L. Sclwyn with Susan M. Baldwin, under the direction of Donald Shepheard, A Time Warner Communications Policy White Paper, September 1995

"Market Failure in Open Telecommunications Networks: Defining the new natural monopoly," in *Networks, Infrastructure, and the New Tusk for Regulation*, by Werner Sichel and Donal L. Alexander, eds., University of Michigan Press, 1996.

Establishing Effective Local Exchange Cornperition: A Recommended Approach Bused Upon an Analysis of the United States Experience, Lee L. Selwyn, paper prepared for the Canadian Cable Television Association and filed as evidence in Telecom Public Notice CRTC 95-96, Local Interconnection and Network Component, January 26, 1996.

The Cost of Universal Service, A Critical Assessment of the Benchmark Cost Model, Susan M. Baldwin with Lee L. Selwyn, a report prepared by Economics and Technology, Inc. on behalf of the National Cable Television Association and submitted with Coninents in FCC Docket No. CC-96-45, April 1996.

Economic Considerations in the Evaluation of Alternative Digital Television Proposals, Lee L. Selwyn (as Economic Consultant), paper prepared for the Computer Industry Coalition on Advanced Television Scrvice. filed with comments iii FCC MM Docket No. 87-268, In the Matter of Advanced Television Systems and Their Impact Upon the Existing Television Broadcast Service, July 11. 1996.

Assessing Incumbent LEC Claims to Special Revenue Recovery Mechanisms: Revenue opportunities, marker assessments, and further empirical analysis of the "Gap" between embedded and forward-looking costs, Patricia D. Kravtin and Lee L. Sclwyn, In the Matter of Access Charge Reform, in CC Docket No. 96-262, January 29, 1997.

The Use of Forward-Looking Economic Cost Proxy Models, Susan M. Baldwin and Lee L. Selwyn, Economics and Technology, Inc., February 1997.

The Effect of Internet Use On The Nation's Telephone Network, Lee L. Selwyn and Joseph W. Laszlo, a report prepared for the Internet Access Coalition, July 22, 1997.

Regulatory Treatment of ILEC Operations Support Systems Costs, Lee L Selwyn. Economics and Technology, Inc., Septenber 1997.

The "Connecticut Experience" with Telecommunications Competition: A Case in Getting it Wrong, Lee L. Selwyn, Helen E. Golding and Susan M. Gately, Economics and Technology, Inc., February 1998.

Where Have All The Numbers Gone?: Long-term Area Code Relief Poliries and the Need for Short-rerm Reform, prepared by Economics and Technology, Inc. for the Ad Hoc Telecommunications Users Committee, International Communications Association, March 1998, second edition, June 2000.

Broken Promises: A Rrvirw of Bell Atlantic-Pennsylvania's Performance Under Chapter 30, Lee L. Selwyn, Sonia N. Jorge and Patricia **D.** Kravtin. Economics and Technology, Inc., June 1998.

Building A Broadband America: The Competitive Keys to the Future of the Internet, Lee L. Selwyn, Patricia D. Kravtin and Scott A. Coleman, a report prepared for the Competitive Broadband Coalition, May 1999.

Bringing Broadband to Rural America: Investment and Innovation In the Wake of the Telecom Act, Lee L. Selwyn, Scott C. Lundquist and Scott A. Coleman, a report prepared for the Competitive Broadband Coalition, September 1999.

Bringing Local Telephone Comperition to Massachusetts, Lee L. Selwyn and Helen E. Golding, prepared for The Massachusetts Coalition for Competitive Phone Service, January 2000.

Subsidizing the Bell Monopolies: How Government Welfare Programs are Undermining Telecommunications Competition, Lee L. Selwyn, April 2002.

Dr. Schwyn has been an invited speaker at numerous seminars and conferences on telecommunications regulation and policy, including meetings and workshops sponsored by the National Telecommunications and Information Administration, the National Association of Regulatory Utility Commissioners, the U.S. General Services Administration, the Institute of Public Utilities at Michigan State University, the National Regulatory Research Institute at Ohio State University, the Harvard University Program on Information Resources Policy, the Columbia University Institute for Tele-Information, the International Communications Association, the Tele-Communications Association, the Western Conference of Public Service Commissioners, at the New England, Mid-Aincrica, Southern and Western regional PUC/PSC conferences, as well as at numerous conferences and workshops sponsored by individual regulatory agencies.

Attachment 2

Installation and Repair Intervals (Interexchange Access) — Annual

43-05' Table Ia. Installation and Repair Intervals (Interexchange Acc) - Annual

Company Name	Row Title	All Special Access					
		1996	199			2000	2001
BELLSOUTH	# Total Number of Orders or Circuits	86,000	106,64	9 145,185	127,801	178,631	
BELLSOUTH	# Missed for Customer Reasons (MCR)			0 34,981	1 28,175	34,877	41,854
BELLSOUTH	% Commitments Met	89.18	88.4	6 85.14	85.12	89.6€	
BELLSOUTH	Average Interval (in days)	13.2			15.9	16.3	17.5
BELLSOUTH	# Total Trouble Reports	68,849					130,805
BELLSOUTH BELLSOUTH	% Trouble Reports	80%					67%
QWEST	Average Interval (in hours)	3.3					
OWEST	# Total Number of Orders or Circuits	99,884	+				129,566
QWEST	# Missed for Customer Reasons (MCR)	70.5		0 27.537			60,660
QWEST	% Commitments Met	79.51			+	90.71	95.03
QWEST	Average Interval (in days) # Total Trouble Reports	14.2					15.4
OWEST	% Trouble Reports	89,302					120,756
QWEST	Average Interval (in hours)	89% 5.2				68%	93%
	# Total Number of Orders or Circuits			4			2.7
SOUTHWESTERN	# Missed for Customer Reasons (MCR)	50,727				+	136,614
SOUTHWESTERN	% Commitments Met	00.0	1			7.200	22,784
SOUTHWESTERN	Average Interval (in days)	80.9		+		94.32	86.84
	# Total Trouble Reports	68,576		<u> </u>			13.9
SOUTHWESTERN	% Trouble Reports	135%			91,822	122,473	151,224
SOUTHWESTERN	Average Interval (in hours)	2.1	2.1			351% 2.6	111%
	# Total Number of Orders or Circuits	58,419				80,737	4.7 90,032
PACIFIC TELESIS	# Missed for Customer Reasons (MCR)	30,413	00,370		24,078	16,795	13,895
PACIFIC TELESIS	% Commitments Met	93.63	89.4		74.68	69.53	74.63
PACIFIC TELESIS	Average Interval (in days)	22.6			22.3	37.3	20.7
	# Total Trouble Reports	63,809	46,055	4	104,420	59,015	69,134
	% Trouble Reports	109%	69%		77%	73%	77%
	Average Interval (in hours)	4.7	5	4.6	4.3	4.5	3.9
AMERITECH	# Total Number of Orders or Circuits	73,555	80,653		132,578	544,774	612,019
	# Missed for Customer Reasons (MCR)		*****	21,919	20.257	36,386	26,294
	% Commitments Met	87.9	92.5		93.61	88.01	92.18
	Average Interval (in days)	19	13.1	14.6	15.7	15.6	15.3
AMERITECH	# Total Trouble Reports	41,196	40,314	40,907	31,548	28,633	64,533
	% Trouble Reports	56%	50%	36%	24%	5%	11%
	Average Interval (in hours)	3.7	3.1	3.1	3	2.9	5.8
BELL ATLANTIC	# Total Number of Orders or Circuits	73,660	246,767	236,655	208,399	206,146	207,098
	# Missed for Customer Reasons (MCR)		12,090	53,606	50,338	48,357	49,028
	% Commitments Met	77.53	96.53	94.45	84.71	82	81.19
	Average Intervat (in days)	29.2	13	20.5	1 7.7	23.6	15.6
	# Total Trouble Reports	22,293	113,267	80,461	94,454	89,218	142,218
	% Trouble Reports	30%	46%	34%	45%	43%	69%
	Average Interval (in hours)	10.7	2.6	2.8	4.1	5.1	6
	# Total Number of Orders or Circuits	57,376	60,495	47,972	56,157	65,916	83,314
	# Missed for Customer Reasons (MCR)		0	16,980	28,706	22,049	13,214
	% Commitments Met	92.26	89.7	89.55	90.26	84.35	96.01
	Average Interval (in days)	11.52	13	21.1	21.3	28.3	22.7
	# Total Trouble Reports	67,702	70,406	75,550	79,870	81,840	124,714
	% Trouble Reports	118%	116%	157%	142%	124%	150%
	Average Interval (in hours)	9	700.004	7.9	8.4	10.2	9.2
	* Total Number of Orders or Circuits	499,621	786,281	871,305	882,999	1,289,308	1,452,919
	# Special Access Lines	22,067,774	26,260,133	33,999,156	48,708,169	65,451,767	79,470,270
	Total Trouble Reports	421,727	501,730	489,299	594,042	599,323	803,384
	% Trouble Reports/Orders or Circuits	84%	64%	56%	67%	46%	55%
	% Trouble Reports/Lines	1.91%	1.91%	1.44%	1.22%	0.92%	1.01%
TOTAL RBOC WITH		400.000	705.000		750 404	74.50	0 (0 000
	Total Number of Orders or Circuits	426,066	705,628	757,416	750,421	744,534	840,900
	Total Trouble Reports Trouble Reports	380,531	461,416	448,392	562,494	570,690	738,851
	a rrouble reports	89%	65%	59%	75%	77%	88%

Mholesale Relien

Over \$9B in 2002 revenue

(45).35B) Access

Rescie

13:9% (\$1:35<u>B</u>)

16.7g

(\$1.50 B)

Lower

ATTACHNENT 4

MSAs With Full Pricing Flexibility for Special Access (Phase II Flexibility)

AKRON OH ALBUQUERQUE NM ANCHORAGE AK AUSTIN-SAN MARCOS TX **BELLINGHAM WA BINGHAMTON NY** BOISE CITY ID CHAMPAIGN-URBANA IL CHARLESTON WV COLORADO SPRINGS CO CORPUS CHRISTI TX DAVENPORT-MOLINE-ROCK ISLAND(IA-IL) - IA DECATURIL DESMOINES IA DOVER DE **DUBUQUE IA** ĒŪĢĔÑĔ-SPRINGFIELDOR FARGO-MOORHEAD(ND-MN) - MN FARGO-MOORHEAD(ND-MN) - ND FLINT MI FORT WAYNE IN GRAND RAPIDS-MUSKEGON-HOLLAND MI HAGERSTOWN MD HOUSTON TX IOWA CITY(IA) KANSAS CITY (MO-KS) - KS KANSAS CITY (MO-KS) - MO LITTLE ROCK-NORTH LITTLE ROCK AR LYNCHBURG(VA) MADISON WI MEDFORD-ASHLAND OR MEDFORD-ASHLAND(OR)

MILWAUKEE-WAUKESHA WI **NEWARK NJ** NORFOLK-VIRGINIA BEACH-NEWPORT NEWS (VA-NC) - VA OKLAHOMA CITY OK OLYMPIA WA OMAHA (NE-IA) . NE OMAHA(NE-IA) - IA PARKERSBURG-MARIETTA(WV-OH) - WV PHOENIX-MESA AZ PORTLAND-VANCOUVER (OR-WA) -WA PORTLAND-VANCOUVER (OR-WA) -OR READING(PA)
RICHMOND-PETERSBURG VA
ROANOKE(VA)
ROCHESTER(MN)
ROCKFORD(IL)
SALT LAKE CITY-OGDEN UT SAN ANGELO(TX) SAN ANTONIO TX SAN JOSE CA SPOKANE WA SPRINGFIELD II. ST. CLOUD(MN) ST. LOUIS (MO-IL) - MO STAMFORD-NORWALK CT TOPEKA KS TULSA(OK)
VINELAND-MILLVILLE-BRIDGETON(NJ) WILLIAMSPORT PA WILMINGTON-NEWARK (DE-MD) - DE WILMINGTON-NEWARK(DE-MD) - MD YAKIMA(WA)

MSAs with Partial Pricing Flexibility for Special Access (Phase I)

ALBANY-SCHENECTADY-TROY NY ALLENTOWN-BETHLEHEM-EASTON PA ALTOONA(PA) AMARILLO TX ATLANTA GA BALTIMORE MD BATON ROUGE(LA)
BILOXI-GULFPORT-PASCAGOULA(MS) BOSTON (MA-NH) - MA BOSTON(MA-NH) NH BRIDGEPORT CT BUFFALO-NIAGARA FALLS NY BURLINGTON(VT) CHARLOTTE-GASTONIA-ROCK HILL (NC-SC) - NC CHATTANOOGA (TN-GA) - TN CHICAGO IL CINCINNATI (OH-KY-IN) - OH COLUMBUS OH DALLAS TX DAYTONA BEACH(FL) DAYTON-SPRINGFIELD OH **DENVER CO** DETROIT MI

ERIE(PA)
EVANSVILLE-HENDERSON(IN-KY)- IN
FORT COLLINS-LOVELAND(CO)
FORT WORTH-ARLINGTON TX
GAINESVILLE FL
GREELEY(CO)
GREENSBORO--WINSTON-SALEM--HIGH POINT NC
HARRISBURG-LEBANON-CARLISLE(PA)
HARTFORD CT
HONOLULU HI
HUNTINGTON-ASHLAND(WV-KY-OH) - WV
INDIANAPOLIS IN
JACKSON(MS)
JACKSONVILLE FL
KALAMAZOO-BATTLE CREEK MI
KNOXVILLE TN
LAKE CHARLES(LA)
LAKELAND-WINTER HAVEN FL
LANCASTER(PA)
LOS ANGELES-LONG BEACH CA
LOUISVILLE (KY-IN) - KY
LUBBOCK(TX)
MANCHESTER (NH) - NH

MELBOURNE-TITUSVILLE-PALM BAY FI MEMPHIS (TN-AR-MS) - TN MIAMI FL MINNEAPOLIS-ST PAUL (MN-W1) - MN MONROE(LA) MONTGOMERY(AL) NASHVILLE TN **NEW YORK NY** NORFOLK-VIRGINIA BEACH-NEWPORT NEWS(VA-NC) NC ORLANDO FL PENSACOLA(FL) PHILADELPHIA (PA-NJ) - NJ PHILADELPHIA (PA-NJ) -PA PITTSBURGH PA PORTLAND(ME) PORTSMOUTH-ROCHESTER (NH-ME) -NH POOVSIMENICIEMPROCRESETERWARWES (REMA) - RI PROVO-OREM UT PUEBLO(CO)

RALEIGH-DURHAM-CHAPEL HILL(NC)

SACRAMENTO CA

SALEM OR

MSAs with Partial Pricing Flexibility for Special Access (Phase I)

SAN DIEGO CA
SAN FRANCISCO CA
SANTA BARBARA-SANTA MARIA-LOMPOC(CA)
SARASOTA-BRADENTON FL
SAVANNAH(GA)
SCRANTON-WILKES-BARRE--HAZLETON(PA)
SEATTLE-BELLEVUE-EVERETT WA
SHREVEPORT-BOSSIER CITY(LA)
SIOUX CITY IA-NE
SIOUX CITY IA-NE
SIOUX CITY IA-NE
SPRINGFIELD MA
SPRINGFIELD MO
STATE COLLEGE(PA)
SYRACUSE(NY)
TACOMA WA
TAMPA-ST. PETERSBURG-CLEARWATER FL
TOLEDO OH
TUCSON AZ
WASHINGTON (DC-MD-VA-WV) - VA
WASHINGTON (DC-MD-VA-WV) - DC PROPER
WATERLOO-CEDAR FALLS(IA)
WEST PALM BEACH-BOCA RATON FL
WILMINGTON NC
WORCESTER(MA-CT) - MA

MSAs Without Pricing Flexibility

KENOSHA WI KILLEEN-TEMPLE(TX) KOKOMO(IN) LA CROSSE(WI-MN) LAFAYETTE LA LAFAYETTE(IN) LANSING-FAST LANSING MI LAREDO(TX) LAS CRUCES(NM) LAS VEGAS NV-AZ LAWRENCE MA-NH LAWRENCE(KS) LAWTON(OK) LEWISTON-AUBURN(ME) I FXINGTONKY LIMA OH LINCOLN(NE) LONGVIEW-MARSHALLTX LOUISVILLE(KY-IN) LOWELL MA-NH MACON GA MANSFIELD(OH) MCALLEN-EDINBURG-MISSION(TX) MEMPHIS TN-AR-MS MERCED(CA) MIDDLESEX-SOMERSET-HUNTERDON N.I. MINNEAPOLIS-ST. PAUL (MN-WI) MOBILE AL MODESTO CA MONMOUTH-OCEANNJ MUNCIE(IN) MYRTLEBEACH(SC) NAPLES(FL) NASHUA NH NASSAU-SUFFOLKNY NEW BEDFORD(MA) NEW HAVEN-MERIDEN CT NEW LONDON-NORWICH(CT-RI) NEW ORLEANS(LA) NEWBURGH(NY-PA) OAKLAND CÀ

OCALA(FL) ODESSA-MIDLAND(TX) ORANGE COUNTY CA OWENSBOROKY PANAMA CITY(FL) PARKERSBURG-MARIETTA(W/LOH) PEORIA-PEKIN(IL) PINE BLUFF(AR) PITTSFIELD(MA) POCATELLO(ID) PROVIDENCE-FALL RIVER-WARWICK(RI-MA) PUNTA GORDA(FL) RACINE WI RAPID CITY(SD) REDDING(CA) RENO NV RICHLAND-KENNEWICK-PASCO(WA) RIVERSIDE-SAN BERNARDINO CA ROCHESTER NY ROCKY MOUNT(NC) SAGINAW-BAY CITY-MIDLAND MI SALEM(OR) SALINAS CA SAN LUIS OBISPO-ATASCADERO-PASO ROBLES(CA) SANTA CRUZ-WATSONVILLE(CA) SANTA FE(NM) SANTA ROSA CA SAVANNAH(GA) SHARON(PA) SHEBOYGAN(WI) SHERMAN-DENISON(TX) SIOUX CITY(IA-NF) SIOUX FALLS(SD) SOUTH BEND IN SPOKANE(WA) ST. JOSEPH(MO) ST. LOUIS MO-IL STEUBENVILLE-WEIRTON OH-WV STOCKTON-LODI CA SUMTER(SC) TALLAHASSÉE FL

TERRE HALITE IN TEXARKANA(TX-AR) TRENTON NJ TUSCALOOSA(AL) TYLER(TX)
UTICA-ROME(NY) VALLEJO-FAIRFIELD-NAPA CA VENTURA(CA) VISALIA-TULARE-PORTERVILLE(CA) WACO TX WASHINGTON(DC MD-VA-WV) WATERBURY CT . WAUSAU(WI) WHEELING WV-OH WICHITA FALLS(TX) WICHITA KS YOLO(CA) YORKIPA YOUNGSTOWN-WARREN OH YUBA CITY(CA) YUMA(AZ)